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ABSTRACT 

New methods for accelerating the determination of basis trees and 

dual evaluaters for distribution problems are compared with standard solu- 

tion procedures in a computational study of a wide range of distribution 

problems of varying sizes and densities.   Computer programs utilizing the 

new methods are tested for computational efficiency in an experiment involv- 

ing four solution techniques, four start algorithms, and four change of basis 

criteria, thus affording an empirical determination not only of the merits 

of various procedures in isolation but also of their effectiveness in combina- 

tion. 

The study discloses that the most efficient solution procedure arises 

by coupling a primal transportation algorithm (embodying the accelerated 

updating and pricing methods) with a version of the Row Minimum start 

rule and a "modified first negative evaluator" rule.   The resulting method 

was found to improve upon the efficiency of general purpose algorithms 

(taken from standard computer packages) by a factor of 50 or better, and also 

improved upon a streamlined version of the SHARE out-of-kilter code by a 

factor of 3.    The method's median solution time for solving 175 x 175 dis- 

tribution problems on a CDC 6600 computer was 11.4 seconds with a range 

of 9 to 13 seconds. 
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1. 0   Introduction and Scope of the Computational Analysis 

The major purpose of this paper is to examine the following notions 

that have become part of the folklore surrounding the distribution (transpor- 

tation) problem. 

(1) The most efficient algorithm for solving network problems is the 

out-of-kilter network algorithm developed by Ford and Fulkerson [11); 

(2) The computational efficiency provided by special purpose algorithms 

for distribution and network problems is not significantly greater than that pro- 

vided by general "urpose linear programming methods that use sophisticated 

procedures for e^.loiting sparse matrices; 

(3) The most efficient criterion (from the standpoint of total compu- 

tational time) for determining a basis exchange in the context of the distribu- 

tion problem is the most negative evaluator criterion [9, 20, 21); 

(4) The total solution time required to solve distribution problems of 

2 
dimension m x m increases proportionately to m   [10]. 

A secondary purpose of this study is to compare solution times between 

special purpose primal and dual simplex algorithms for solving distribution 

problems.   Such a comparison is motivated by the conjecture [18, 19) that the 

special purpose dual algorithms are likely to be "faster" than their counter- 

part primal algorithms.    The reason for this conjecture is two-fold:   (a)   To 

apply the most negative evaluator criterion to a dense m x m distribution 

problem in the dual approach requires the examination of only (2m-l) evaluators; 

whereas the primal approach requires the examination of m   - (2m-1) evaluators; 

(b) there exist procedures for finding basic feasible solutions for the dual of 

■■""■■•■-"■""•■ "•"""  ■ ' i   - _ ^^MM^Mna^g 
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the distribution problem while counterpart procedures (which insure that the 

starting basis will always be feasible) do not exist for the primal problem. 

Another purpose of our study,  related to the foregoing, is to examine the 

effect on total computational time of different procedures for obtaining initial 

starting bases for both the primal and dual formulations of the distribution 

problem.   The final purpose of our study is to examine the effect of the density 

on the solution time of an m x m distribution problem. 

To guarantee a valid and impartial comparison of the procedures under 

analysis, the distribution problems used in the study varied between 9 percent 

and 100 percent density and varied in size from 10 x 10 to 200 x 200 (origins 

x destinations).   A total of 140 different distribution problems were examined, 

all of which were randomly generated using a uniform probability function. 

The total supply of each m x m distribution problem was set equal to 1000m. 

The only other restrictions placed on the problems consisted of requiring the 

number of variables to be less than or equal to 10, 000 and requiring the cost 

coefficients to lie between 1 and 100. 

To accomplish these purposes, it has been necessary to obtain (and 

in some instances to develop) computer codes that are representative of the 

"state of the art" in solving network and linear programming problems.   A 

description of the codes used in this study (e.g., out-of-kilter algorithm, 

general linear programming algorithm, and special purpose primal and dual 

simplex algorithms for solving distribution problems) is contained in a sub- 

sequent section. 

        -       
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The CDC 6600 at The University of Texas at Austin Computation Center 

was used to solve the distribution problems for the out-of-kllter and special 

purpose primal and dual simplex computer codes.    Furthermore,  the computer 

jobs were executed during periods when the machine load was approximately 

the same.   The CDC 6600 at the CDC Data Center In Houston was used to 

solve the distribution problems for the general purpose simplex computer- 

code. OPHELIE/LP. 

The practical importance of determining the efficiency of alternative 

ways for solving distribution and network problems is affirmed not only by 

the fact that a sizeable fraction of the linear programming literature has been 

devoted to it, but also by the fact that an even larger share of the many con- 

crete Industrial and military applications of linear programming deal with 

distribution problems.   Distribution problems often occur as subproblems 

in a larger problem (e. g., the traveling salesman problem or the warehouse 

location problem).   Moreover, industrial applications of distribution problems 

often contain thousands of variables, and hence a streamlined algorithm Is 

not only computationally worthwhile but a practical necessity.   In addition, a 

number of linear programs that appear at first glance to be unrelated to the 

distribution problem can nevertheless be given a distribution problem formu- 

lation [7, 9,   11,22, 23,  33], and It is also possible to approximate certain 

additional linear programming problems by such a formulation. 

   -—-         _  . ..   . ..■   ~-maim^^miM^i^*m 
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2.0   Description of Procedurea Under Analysis 

2. 1  Solution Algorithms 

The general simplex linear programming computer code employed 

in the study was Control Data's OPHELIE/LP code.   OPHELIE/LP is a 

subsystem of the OPHELIA II Mathematical Programming System, and it 

fully exploits the characteristics of the CDC 6600 computer. 

The optimization is performed by a primal algorithm based on the 

revised simplex method with the product form of the inverse.   The algorithm 

performs the computation with a selection of multiple columns that is not 

fixed a priori but that can be altered dynamically to take into account statistics 

established in the course of iterations and the space available in central memory. 

Two alternatives are permitted:   one may successively introduce the 

best columns from among the remaining candidates, or optimize the linear 

sub-program formed by the basis and candidates.   If cycling is detected during 

solution, an automatic perturbation procedure is triggered to remedy it.    For 

further information concerning OPHELIE/LP,   see [26, 27]. 

The other algorithms used in the study are designed to take direct 

advantage of the topological structure of the distribution problem. 

The     special purpose primal simplex approach is the "Row-Column Sum 

Method" [7].    To enhance the computational efficiency of the algorithm, the 

predecessor and augmented predecessor index methods [17,  18] are employed 

to determine a basis exchange path and to effect the appropriate updating of 
3 

the problem data.   (The basis for  these procedures is the triple labeling 
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procedure proposed by Ellis Johnson [23],) 

Lemke's Dual Method [25]  provides the foundation for the special 

purpose dual algorithm3 (the "Dual Row-Column Sum Method").   The computer 

code for this algorithm modifies the dual method to take advantage of the pre- 

decessor and augmented predecessor index methods and the poly-6) method 

[7] to produce what has been called the "double pricing" dual algorithm [15]. 

Both the primal and dual row-column methods are "in core" computer 

codes.   Each currently has a limit of 10,000 admissible cells (variables). 

The out-of-kilter algorithm was tested both because of its reputation 

as a highly efficient solution method for network problems in general and also 

because of the sparseness of some of the distribution problems used in this 

study (which the out-of-kilter method is capable of exploiting to special advantage). 

The computer code for the out-of-kilter method employed in the analysis was 

written by R. J. Classen of the RAND Corporation and is distributed by SHARE 

[8, 30].   The out-of-kilter computer code is an "in core" algorithm and 

currently has a limit of 10,000 admissible arcs.   The general form of the code 

was modified slightly by the authors to enhance its computational efficiency 

for application to distribution problems. 

2.2  Start Algorithms 

A variety of claims have been made concerning the influence of 

various "starting" algorithms, although documented evidence to support 

these claims has not been entirely satisfactory.   To help remedy this situation, 

our study includes comparisons of several primal "start" methods that have 

^.,.i.u^^.^.^ ..-,.:.-    ...~~    .   ,     ..■■             ..-..,...,..,-   :       . ■        i ii i*mim*mu 
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appeared in the literature.   The primal start methods examined are the 

Northwest Corner Rule (9,20), Vogel Approximation Method (VAM) (7,  31], 

Row-Column Minimum [9], and Row-Minimum (10, 20).   These start algorithms 

do not exhaust all of those that have been proposed, but they are representative 

of the start procedures available for the primal formulation of the distribution 

problem. 

The dual start method examined (which is of more recent vintage 

than the primal start methods) is described in [15, 19]. 

2.3   Basis Change Criteria 

Four different criteria for specifying the variable to enter the 

basis (in the primal approach) were examined to ascertain their effect upon 

the total solution time:   the commonly proposed "first negative evaluator" 

[10] and "most negative evaluator" [9] criteria,  and variations of these called 

the "modified first negative evaluator" [10] and "modified most negative 

evaluator" criteria.   The "first negative evaluator" scans the rows of the 

distribution tableau until it encounters the first element whose evaluator 

signals that this cell may "profitably" enter the basis.   The "modified first 

negative evaluator" criterion scans the rows of the distribution tableau until 

it encounters the first row that contains a negative   (i.e., profitable) evaluator, 

and then selects the most negative evaluator in this row. 

The "modified most negative method" begins by selecting the most 

negative evaluator in the tableau on the initial iteration of the algorithm.   At 

each subsequent iteration of the algorithm, a satisficing criterion is used that 

   I   ^i^^MMia^iMMMflMMMyi 
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selects the first variable encountered which has an evaluator less than some 

multiple of the evaluator selected in the preceding iteration.   If no such 

variable exists, the method selects the variable with the most negative 

evaluator.    This criterion is highly flexible, since it can be made to select 

the same variable as the "first negative evaluator" criterion by using a zero 

multiple of the preceding evaluator and to select the same variable as the 

"most negative evaluator'1 criterion by using a large multiple of the preceding 

evaluator.    The multiple used in our analysis was 1/3 (developed by the 

authors on the basis of preliminary testing). 

In the primal approach it is important to consider the trade-off 

between the amount of time required to implement various basis change 

criteria and the number of iterations that result by using these criteria, since 

a method that results in fewer iterations may still consume greater overall 

time due to an increased time per iteration. 

In the dual approach such a trade-off is not particularly important for 

dense    m x m distribution problems since, instead of considering up to 
2 

m    - (2m-1) evaluators (as in the primal approach), the dual method has to 

contend with only 2m-l evaluators.   Consequently, only the most negative 

basis change criterion (which tends to reduce the total number of iterations) 

was used in the special purpose dual simplex code. 

3.0  Numerical Reaults and Their Interpretation 

In this section we present the results of the computational experiment 

concerning   folklores,     start algorithms, solution algorithms and basis 

L, •   "■ 
, L^„i..i,ttbiiU4iAaäuimsmml»U^t§ 
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change criteria.   The various median computation times appear in Tables 1-5. 

The computation times do not include the time for input and output. 

3. 1   Folklores 

The results of the analysis indicate that the topological structure 

of the distribution model merits the use of special purpose linear programming 

algorithms to solve such problems.   The data in Tables 1 and 2 indicate that 

the primal and dual row-column sum algorithms are. respectively, at least 

20 times faster than the OPHELIE/LP general simplex linear programming 

computer code.   In general the special purpose primal simplex method is 

50 times faster.   For instance, the solution for a 100 x 100 distribution is 

approximately 4.5 seconds using the special purpose code and 277 seconds 

using the OPHELIE/LP code.   (Before computing the median times for the 

OPHELIE/LP code, a number of trial runs were made to determine the best 

procedure for selecting the next incoming cell.   The trial results indicated 

that 30 cells should be considered at a time and. further, the most negative 

cell should be selected.) 

Furthermore, the analysis indicates that the out-of-kilter algorithm 

is not the most efficient solution technique for solving all network problems. 

Even for extremely sparse distribution problems, as indicated in Tables 1 

and 2, the special purpose primal algorithm, using the row-minimum start 

method and the modified first negative basis change criterion, was consistently 

2 to 3 times faster than the out-of-kilter algorithm.   Unexpectedly, as 

 — HI   II      llllll-M II   r , |t^MM|MiMM||tjM|MMMMg||^^ 
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indicated in Table 1, the out-of-kilter algorithm was more efficient than 

the special dual       Him (but not the primal algorithm) as soon as m 

became at least 80. 

To compare the change of basis criteria the same starting solution 

was used.   Consequently, only the main loop times required comparison 

to isolate the most effective criterion.   The data in Tables 4 and 5 indicate 

that the highly popular and often referenced "most negative" criterion for 

determining the next vector to enter the basis is not the most efficient basis 

change criterion.   In fact, as indicated in Tables 4 and 5, for the basis 

change criteria examined in the experiment, the most negative evaluator 

criterion was consistently slower than the other basis change criteria 

examined.   Furthermore, when m became larger than 100,  the "most 

negative" criterion required at least three times as much computational 

effort as the other basis change criteria. 

Interestingly, the data in Tables 1 and 4 indicate that the out-of-kilter 

algorithm is more efficient computationally than the primal row-column sum 

algorithm, when the latter employs the most negative evaluator criterion. 

Perhaps the folklore concerning the superiority of the out-of-kilter method 

was developed by comparing the out-of-kilter network algorithm to a trans- 

portation method that used the most negative basis change criterion.    (The 

lack of techniques such as those indicated in Section 2.1 in the previously 

developed special purpose primal methods would undoubtedly have accen- 

tuated the apparent difference between primal and out-of-kilter methods.) 
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The data In Tables 2 and 3 (using the rrw-minlmum start) support 

the finding of Dennis [ 10] that the total solution time required to solve 

m x m distribution problems increases proportionately to m2.   Also, given 

the same relative cost range for a distribution problem, the data indicate 

that the total solution time is approximately twice the time necessary to 

obtain an initial feasible basic solution for the VAM start in dense and 

nondense problems (see Tables 2 and 3). 

3.2  Solution Algorithms, Start Methods and Basis Change Criteria 

An important factor influencing total computation time (and hence 

computational efficiency) is the interrelationship between the start methods 

and basis change criteria.   The relevant tradeoffs for the start algorithms 

involve the time required for obtaining an initial feasible basic solution and 

the number of iterations subsequently required to complete the solution of 

the problem.   Similarly, the relevant tradeoffs for the basis change criteria 

involve the time consumed in searching for a new vector to enter the basis 

and the number of iterations required to obtain an optimal solution (time per 

iteration versus total number of iterations). 

To determine the effect of combining various start procedures with 

various change of basis criteria, and to avoid excessive computational 

expense in making this determination, we tested each change of basis criterion 

relative to a single start method (VAM), and then tested each of the start 

methods relative to the change of basis criterion that was found to be best. 
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Ideally, had it not involved an enormous expenditure of computer time, it 

would have been desirable to have tested all combinations of start procedures 

and change of basis criteria against each other.   However, our findings were 

sufficiently clear cut to make it a reasonably safe bet that the change of basis 

criterion and start procedure that were found to be best "in isolation" will 

also be best in combination.   In particular, from Table 4 and Table 5 it is 

clear that the "modified first negative" basis is faster than the other criteria 

examined both in terms of the time per iteration (or "main loop time") and 

in terms of total solution time.   (This result concurs with the finding of 

Dennis [10].) 

In general, the number of iterations required to obtain the optimal 

solution was significantly reduced by using the "modified most negative" and 

"most negative" basis change criteria.   As indicated in Tables 4 and 5, these 

basis change criteria led to a total iteration count that was consistently less 

than 80 percent of the iteration count associated with the "first negative" and 

"modified first negative" basis change criteria. 

More importantly, however, the "first negative" and "modified first 

negative" basis change criteria are faster than the other criteria examined 

both in terms of the time per iteration (or "main loop time") and in terms 

of total time.   The efficiency of the "first negative" and "modified first nega- 

tive" criteria is accentuated as m increases and the density of the distribu- 

tion problem approaches 100%.   The data in Tables 4 and 5 indicate that the 

main loop time for the "first negative" and the "modified first negative" 
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basis change criteria is consistently less than 70% of the main loop time 

required by the "modified most negative" and "most negative" basis change 
4 

criteria.      Furthermore, these data Indicate that the "modified first negative 

evaluator" criterion consistently requires 20 percent fewer Iterations than 

the "first negative evaluator" criterion and the main loop time of the two 

criteria were approximately equal.   Consequently, as Indicated by the data 

In Tables 4 and 5, the "modified first negative" criterion was consistently 

at least 15 percent faster In terms of total computation time than the "first 

negative" criterion. 

Another interesting fact that the study revealed about the basis 

change criteria concerns the number of possible nonbaslc variables that 

are examined during each Iteration.   The "first negative" and "modified first 

negative" criteria always evaluate substantially fewer nonbaslc variables 

than the "most negative" criterion, and as m Increases the difference In 

the number of nonbaslc variables evaluated also increases significantly.   The 

data in Tables 4 and 5 Indicate that when m equals 20 and 200, the number of 

nonbaslc variables that must be examined by the "first negative" and "modified 

first negative" criteria as compared to the "most negative" criterion Is only 

50% and 5%, respectively.   Thus the results Indicate that the "modified 

first negative" basis change criterion provides the best compromise of the 

tradeoffs for both dense and nondense problems. 

Having determined the "modified first negative" change of basis 

criterion to be significantly more effective than the others, we used this 
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choice rule uniformly thereafter in conducting the tests of the alternative 

start methods.   Again our results were clear cut.   From Tables 2 and 3 it 

is apparent that the Row Minimum start method is best for both dense and 

nondense problems. 

There are a number of interesting observations to be obtained from 

Tables 2 and 3.    Vogel's method, while yielding a good start from the 

standpoint of the number of iterations required after it is completed, takes 

an inordinate amount of time to find an initial solution, and exhibits a large 

average iteration time for dense problems, indicating that the loop structure 

is complicated.   (See Table 2.)  Similarly, the loop structure for the North- 

west Corner start is complicated, whereas the loop structures for the Row 

Minimum and Row-Column Minimum are simpler.   On dense problems the 

solution time of VAM and Row-Column Minimum are approximately equal. 

Comparing the results in Tables 2 and 3 yields several insights into 

the effect of density on primal codes.   In general the nondense problems 

were solved only about 10% faster than dense problems using the Row 

Minimum start, and, in fact, the dense problems were solved faster for 

problem sizes not exceeding 50 x 50.   Thus density does not appreciably 

affect total solution time.    Average main loop time is substantially reduced 

by density, indicating that loop structure becomes less complicated as the 

density of a problem decreases.    This reduction in average main loop time 

is partially offset by the fact that the number of iterations increases slightly 

as density decreases. 
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As indicated in Tables 1 and 2, the special purpose primal simplex 

algorithm was consistently faster than the special purpose dual simplex 

algorithm.   It would be premature, however, to conclude that one should 

abandon the development of special purpose dual simplex algorithms for a 

number of reasons.   For instance, this study indicates that unlike the 

primal approach, the dual approach is greath affected by density.   A 

100 x 100 problem of 13% density was solved in 7. 697 seconds while a 

100 x 100 problem of 20% density was solved in 14. 622 seconds.   Although 

7. 697 seconds is still nearly twice the median solution time for 100 x 100 

problems using the primal approach, it does suggest that the dual method may 

be an efficient solution procedure for solving sparse network problems.   It is 

interesting to note that the out-of-kilter code was not nearly as sensitive to 

density, since its times on the above problems were 9. 973 and 12.045 seconds, 

respectively, hence making the dual method appear still more attractive for 

sparse problems.   Further support for this possibility is given by noting that 

the solution time of the primal approach varies proportionately to the number 

of nodes in the problem while the dual approach varies proportionately to the 

number of arcs in the problem. 

The dual start method used in this study was not an advanced start 

procedure.   Even so, the special purpose dual simplex algorithm consistently 

required fewer than 50% of the number of iterations necessary for the primal 

simplex algorithm when any start method except VAM was used.   These 

observations indicate that substantial computational saving may be present if 

foiv**.,,- 
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advanced start algorithms (such as those developed in [16]) are employed in 

conjunction with the special purpose dual simplex algorithm. 

Although the dual algorithm appears to be computationally slower 

than the primal algorithm, it is particularly useful as compared to the primal 

algorithm for conducting certain types of postoptimality analyses.   A prin- 

cipal motivation cited in the literature for applying the dual method to distri- 

bution problems (see, e.g., [2,3,7]) is the possibility that the problem's 

"supplies" and "demands" may not be permanently fixed, but rather are 

subject to change.   In such a situation, the ability to begin from an optimal 

basis to a given problem and proceed via the dual method to an optimal solution 

for the altered problem is extremely useful.   Such an approach is not available 

using the primal algorithm without extensive computation. 

4.0   Concluding Remarks 

In the context of the important class of linear programs known as dis- 

tribution (or transportation) problems, the special purpose primal and dual 

simplex and the out-of-kilter algorithms have been shown to be consistently 

faster than the general simplex algorithm.   The special purpose primal simplex 

algorithm is in turn consistently faster than the out-of-kilter algorithm and 

the dual simplex algoritnm.   Our results indicate that it is important to deter- 

mine a "good" starting basis for the dual algorithm in order to obtain an advan- 

tageous tradeoff between the total number of iterations and the time required 

to implement the starting algorithm. 
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The computational efficiency of the special purpose primal and dual 

algorithms for solving distribution problems has been shown to be particu- 

larly sensitive to the search time required to find a new arc to enter the 

basis at each iteration.   The dual algorithm is more sensitive in this regard 

than the primal algorithm.   The relative slowness of the dual algorithm's 

main loop time suggests that further research on advanced dual "start" methods 

is worthwhile, since a relatively large amount of time could be spent finding 

an initial basic feasible solution and still permit an overall reduction in 

computation time by reducing the number of iterations. 

On the other hand, a highly efficient dual start will not succeed in making 

the special purpose dual algorithm faster than the special purpose primal 

algorithm unless the main loop time for the dual method can be greatly reduced. 

An important qualification to this assertion rests on the fact that the special 

purpose dual algor'hm appears to gain efficiency relative to the primal algo- 

rithm as the proportion of the number of nodes to number of admissible cells 

increases.   This, combined with the fact that a basic feasible dual solution 

exists for networks (see [19]), indicates that the special purpose dual algorithm 
5 

might be the best solution procedure for minimum cost network problems. 

In the domain of choice rules, the data indicate that the number of 

problem-solving iterations is substantially reduced by using the "most negative" 

and "modified most negative basis change criteria.   However, this reduced 

iteration count does not produce a correspondingly reduced computation time 

since the search time required by these criteria (particularly for dense problems) 

is substantially greater for the "first negative" and "modified first negative" 
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criteria.   In consequence, the latter criteria turn out to be more attractive 

from the standpoint of total computation time.   The "modified first negative" 

criterion is generally the more efficient of the two, although for non-dense 

problems the "first negative" and "modified first negative" criteria appear 

to be comparably efficient. 

The most efficient form of the special primal simplex algorithm was 

found to be based on the Row Minimum start algorithm and the "modified 

first negative" basis change criterion.    The primal simplex algorithm 

employed in this study proved to be from 2 to 15 times faster than the other 

special purpose distribution algorithms that were available for examination. 

In evaluating the performance of the methods tested, considerable 

effort was made to insure that the computer codes were comparably efficient 

in implementing the underlying algorithms, start methods,  and basis change 

criteria.    Moreover, the large differences found between the performance of 

the various procedures tested leads us to believe that these differences will 

continue to hold for improved computer codes (e.g., codes that take special 

advantage of the characteristics of the computer on which they are implemented). 

In fact the techniques used to time the codes suggest that the relative superiority 

of the special purpose algorithms may be even greater than indicated in 

Section 3.    Specifically, the codes for the special purpose methods included 

a number of clocks to measure different aspects of the solution process, 

whereas the codes for the general simplex algorithms and the out-of-kilter 

algorithm only included clocks to measure the total solution time.   When the 
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clocks are removed from the special purpose computer codes, the computational 

efficiency of the algorithms has been found to increase by as much as 40 

percent. 
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FOOTNOTES 

1It is interesting to note that most of the folklore related to the 
computational requirements for solving distribution problems is based on 
computation performed 10 to 15 years ago.   Furthermore, the distribution, 
problems examined were often small, maximum dimension of 20 x 20 [6,9], 
and they were solved either by hand or by first or second generation computers. 

o 
This code was developed by F. Glover, D. Karney and D. Klingman. 

3 
This code was developed by the authors. 

4"Main loop time" (average iteration time) is the time required to 
test for optimality to determine the • ariable to enter the basis, to obtain the 
variable to leave the basis, to find the basis exchange path, and to update the 
basic variables. 

^The authors are currently testing other dual start algorithms and new 
procedures for reducing the main.loop time of the dual method.   Network algo- 
rithms are also being tested. 

g 
Incidental to our investigation was the finding--or rather confirmation— 

that one can make no valid conjecture about the computational efficiency of 
two implementations of the same algorithm unless the two computer codes are 
executed on the same machine using the same data and the same compiler.   This 
fact was underscored in tests comparing our special purpose primal simplex 
computer code to another special purpose code, based on similar techniques, 
that was executed on a Urivac 1108.   The latter code ran faster on the Univac 
than our code ran on the CDC 6600,  suggesting that our code was less efficient 
due to the fact that the CDC 6600 is generally a faster machine than the 1108. 

Surprisingly, when the Univac 1108 computer code was executed on 
the CDC 6600, it ran slower than the special purpose primal computer code 
used in this experiment.   The apparent reason for this reversal is that the 
Univac 1108 FORTRAN compiler produces more efficient object code. 

This result stimulated us to check with Control Data Corporation 
about their compiler, which led us to discover that the CDC 6600 has two 
FORTRAN compilers.   One produces an object code which executes about 
twice as fast as the other.    This implies that our times could have been reduced 
by 50% if we had used the other compiler.   Since the total compilation and 
execution time of the two compilers is equal. The University of Texas Compu- 
tation Center only uses the less efficient object code compiler. 
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